top of page

İstatistiksel Anlamlılık: Alfa Düzeyi, p-Değeri ve Test Gücü Üzerinden İnceleme

Temel Kavramlar ve Hipotezler

  • Araştırmalarda, gözlenen bir farklılığın ya da ilişkinin gerçek mi yoksa tesadüfi mi olduğunu belirlemek için iki karşıt hipotez kurulur.

  • Bunlar “yokluk hipotezi” (H₀) ile “araştırma hipotezi” (H₁) olarak adlandırılır.

  • H₀, veride anlamlı bir fark ya da ilişki olmadığını; H₁ ise farkın veya ilişkinin gerçekten var olduğunu ileri sürer.

  • İstatistiksel anlamlılık, H₀’ı ne ölçüde güvenle reddedebileceğimizi gösterir.

araştırma istatistik istatistiksel anlamlılık

Alfa Düzeyi ve Tip I Hata

Araştırmacı, H₀’ı reddetme kararını vermeden önce kabul edeceği maksimum yanlış red (Tip I) hatası oranını belirler. Buna “anlamlılık düzeyi” ya da alfa (α) denir. α = 0,05 seçildiğinde, gerçekte fark yokken %5 olasılıkla H₀’ı yanlışlıkla reddetme riski kabul edilmiş olur.


Daha düşük alfa değerleri (örneğin 0,01) hata riskini azaltırken, aynı anda testin gücünü de düşürebilir.


p-Değeri ve Yorumlanışı

  • p-değeri, H₀ doğru iken gözlenen veya daha uç bir etkinin elde edilme olasılığını verir.

  • p yaklaştıkça 0, etkinin şanstan kaynaklanma ihtimali azalır; p yaklaştıkça 1 ise elde edilen farkın tamamen tesadüfi olduğu anlaşılır.

  • H₀’ı reddetmek için p, önceden belirlenen alfa düzeyinden küçük olmalıdır (örneğin p < 0,05).

  • Ancak p değeri tek başına etkinin büyüklüğünü ya da araştırmanın pratik önemini göstermez.


Etki Büyüklüğü ve Güven Aralığı

Anlamlı bir p sonucu, yalnızca farkın tesadüfi olmadığını kanıtlar. Etkinin ne kadar büyük olduğunu ölçmek için etki büyüklüğü (örneğin Cohen’s d, Pearson r, η²) hesaplanmalıdır.


Etki büyüklüğü; küçük, orta ve büyük olmak üzere yorumlanabilir. Bunun yanı sıra %95 güven aralığı, parametrik tahminlerin belirsizlik sınırlarını sunarak elde edilen değerin tutarlılığını gösterir.

Etki Büyüklüğü güven aralığı

Testin Gücü (Power) ve Tip II Hata

Test gücü, H₁ gerçek olduğunda H₀’ı reddetme olasılığıdır. Genellikle en az 0,80 (yani %80) olarak hedeflenir. Test gücü, örneklem büyüklüğü, etki büyüklüğü ve alfa düzeyine bağlıdır.


Yetersiz güç, gerçek bir fark varken H₀’ı reddedememe (Tip II hata) riskini artırır. Araştırma tasarımı aşamasında prior power analizi yaparak gerekli örneklem büyüklüğünü belirlemek, sonuçların güvenilirliğini yükseltir.


Çoklu Karşılaştırmalar ve Düzeltme Yöntemleri

  • Birden çok hipotez testi yapıldığında, her test için ayrı alfa kullanmak toplam Tip I hata oranını yükseltir.

  • Bonferroni, Holm veya Benjamini–Hochberg gibi düzeltme yöntemleri, aile-hatası oranını kontrol altında tutar.

  • Bu yöntemler, anlamlılık düzeyini her teste uygun şekilde ayarlayarak yanlış pozitif sonuç riskini düşürür.

istatistikte çoklu karşılaştırma

Raporlama Prensipleri

Araştırma bulguları paylaşılırken yalnızca “p < 0,05” ifadesine yaslanmak yetersiz kalır. Aşağıdaki unsurların eksiksiz sunulması, istatistiksel açıklayıcılığı güçlendirir:

  • Tam p değeri (örneğin p = 0,032)

  • Etki büyüklüğü ölçüsü ve yorum seviyesi

  • %95 güven aralığı

  • Testin gücü ve uygulanan çoklu karşılaştırma düzeltmesi

  • Kullanılan testin adı ve varsayımların sağlanıp sağlanmadığı


Uygulamada Dikkat Edilmesi Gerekenler

  • p-hacking’den kaçınma: Analizleri tekrar tekrar çalıştırarak yalnızca anlamlı çıkan sonuçları raporlamak, bilimsel güvenilirliği zedeler.

  • Tek eşiğe odaklanmama: p değeri 0,049 ile 0,051 arasında pratik açıdan bir fark yoktur; klinik ve teorik bağlam her zaman göz önünde bulundurulmalıdır.

  • Örneklem temsiliyetinin önemi: Küçük veya önyargılı örneklemler, genellenebilirliği kısıtlar.

  • Veri görselleştirme: Ortalama±GA çizimleri, kutu grafikleri veya dağılım grafikleri ile sonuçlar somutlaştırılmalı; metinsel ifadeler görsellerle desteklenmelidir.


İstatistiksel anlamlılık, araştırma sorularına yanıt verirken kritik bir araç olmasına karşın doğru yorum ve kapsamlı raporlama gerektirir.


Alfa düzeyi ve p değeri, etki büyüklüğü ve güven aralığı ile birlikte değerlendirilmeli; test gücü ve çoklu karşılaştırma düzeltmeleri titizlikle uygulanmalıdır. Bu bütüncül yaklaşım, bulguların hem istatistiksel hem de bilimsel açıdan sağlam temellere dayanmasını sağlar.

Yorumlar


bottom of page